User Tools

Site Tools


admittance_inverter

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
admittance_inverter [2025/04/16 11:07] – created kladmittance_inverter [2025/05/04 08:27] (current) kl
Line 1: Line 1:
 =====Admittance inverter===== =====Admittance inverter=====
  
-An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value B²: 
  
-$$Y_{in}=\frac{B^2}{Y_{out}}$$ 
  
-B is a susceptance, and is called the characteristic admittance of the inverter.+====Definition====
  
-Different options exist to realize an admittance inverter, of example:+An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$multiplied by a value J²:
  
-{{ :admittance_inverter_general_example.png?400 |}}+$$Y_{in}=\frac{J^2}{Y_{out}}$$
  
-The susceptance B can be an inductance or a capacitance. For examplewhen we choose a capacitor, B equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). +J is a susceptance (in siemens), and is called the characteristic admittance of the inverter.
- +
-{{ :admittance_inverter_pi-c-network.png?400 |}}+
  
 +For the ABCD matrix of an admittance inverter, it holds that A=0 and D=0, with the ABCD matrix of a two-port network defined as:
 $$\begin{bmatrix} $$\begin{bmatrix}
 +V_1 \\ I_1
 +\end{bmatrix}
 +=\begin{bmatrix}
 +A & B\\ C & D
 +\end{bmatrix}
 +\begin{bmatrix}
 +V_2 \\ -I_2
 +\end{bmatrix}$$
 +
 +Since the admittance inverter is a reciprocal network, it follows that AD-BC=1, and since A=D=0, we get: B.C=1.
 +
 +The general ABCD matrix of an admittance inverter is given by:
 +$$ABCD=\begin{bmatrix}
 +0 & -\frac{j}{J}\\-jJ & 0
 +\end{bmatrix}$$
 +
 +
 +====Example: capacitive wireless power transfer coupling====
 +
 +Different options exist to realize an admittance inverter, for example:
 +
 +{{ admittance_inverter_general_example.png?400 |}}
 +
 +For example, when we choose a capacitor, J equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor).
 +
 +$$J=\omega C$$
 +
 +{{ immittance_inverter_pi-c-network.png?300 |}}
 +
 +Note that this is exactly the electric coupling for capacitive wireless power transfer, where C is the mutual capacitance! 
 +
 +The ABCD matrix of this admittance inverter is given by:
 +$$ABCD=\begin{bmatrix}
 0 & \frac{-j}{\omega C}\\-j \omega C & 0 0 & \frac{-j}{\omega C}\\-j \omega C & 0
 \end{bmatrix}$$ \end{bmatrix}$$
  
-{{ :admittance_inverter_pi-l-network.png?400 |}}+The corresponding impedance and admittance matrix equals:
  
-{{ :admittance_inverter_T-l-network.png?400 |}}+$$Z=\begin{bmatrix} 
 +0 & \frac{j}{\omega C} \\ \frac{j}{\omega C} & 0 
 +\end{bmatrix}$$
  
-{{ :admittance_inverter_T-c-network.png?400 |}}+$$Y=\begin{bmatrix} 
 +0 & -j\omega C\\-j \omega C & 0 
 +\end{bmatrix}$$
  
 +====Another example====
  
 +Many admittance inverters exist. Another example is the following circuit:
 +
 +{{ immittance_inverter_pi-l-network.png?300 |}}
 +
 +Here, 
 +
 +$$J=-\frac{1}{\omega L}$$
 +
 +The ABCD matrix of the corresponding two-port network equals:
 +
 +$$ABCD=\begin{bmatrix}
 +0 & j \omega L \\ \frac{j}{\omega L} & 0
 +\end{bmatrix}$$
 +
 +The corresponding impedance and admittance matrix equals:
 +
 +
 +$$Z=\begin{bmatrix}
 +0 & -j \omega L \\ -j \omega L & 0
 +\end{bmatrix}$$
 +
 +$$Y=\begin{bmatrix}
 +0 & \frac{j}{\omega L} \\ \frac{j}{\omega L} & 0
 +\end{bmatrix}$$
  
  
 +----
 +<color #808080>**References**</color>
 +  * <color #808080>Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23.</color>
 +  * <color #808080>J.S.G. Hong and  M.J. Lancaster, ``M.J. Microstrip filters for RF/microwave applications,'' John Wiley and Sons.: Hoboken, NJ, USA, 2004.</color>
  
-Reference: Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23.+---- 
 +Looking for impedance inverter? 
 +  * [[Impedance inverter]]
admittance_inverter.1744801645.txt.gz · Last modified: by kl