admittance_inverter
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
admittance_inverter [2025/04/16 11:08] – kl | admittance_inverter [2025/05/04 08:27] (current) – kl | ||
---|---|---|---|
Line 1: | Line 1: | ||
=====Admittance inverter===== | =====Admittance inverter===== | ||
- | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value B²: | ||
- | $$Y_{in}=\frac{B^2}{Y_{out}}$$ | ||
- | B is a susceptance, | + | ====Definition==== |
+ | |||
+ | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value J²: | ||
+ | |||
+ | $$Y_{in}=\frac{J^2}{Y_{out}}$$ | ||
+ | |||
+ | J is a susceptance | ||
+ | |||
+ | For the ABCD matrix of an admittance inverter, it holds that A=0 and D=0, with the ABCD matrix of a two-port network defined as: | ||
+ | $$\begin{bmatrix} | ||
+ | V_1 \\ I_1 | ||
+ | \end{bmatrix} | ||
+ | =\begin{bmatrix} | ||
+ | A & B\\ C & D | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | V_2 \\ -I_2 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | Since the admittance inverter is a reciprocal network, it follows that AD-BC=1, and since A=D=0, we get: B.C=1. | ||
+ | |||
+ | The general ABCD matrix of an admittance inverter is given by: | ||
+ | $$ABCD=\begin{bmatrix} | ||
+ | 0 & -\frac{j}{J}\\-jJ & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | |||
+ | ====Example: | ||
Different options exist to realize an admittance inverter, for example: | Different options exist to realize an admittance inverter, for example: | ||
- | {{ :admittance_inverter_general_example.png? | + | {{ admittance_inverter_general_example.png? |
- | The susceptance B can be an inductance or a capacitance. | + | For example, when we choose a capacitor, |
- | {{ : | + | $$J=\omega C$$ |
- | $$\begin{bmatrix} | + | {{ immittance_inverter_pi-c-network.png? |
+ | |||
+ | Note that this is exactly the electric coupling for capacitive wireless power transfer, where C is the mutual capacitance! | ||
+ | |||
+ | The ABCD matrix of this admittance inverter is given by: | ||
+ | $$ABCD=\begin{bmatrix} | ||
0 & \frac{-j}{\omega C}\\-j \omega C & 0 | 0 & \frac{-j}{\omega C}\\-j \omega C & 0 | ||
\end{bmatrix}$$ | \end{bmatrix}$$ | ||
- | {{ :admittance_inverter_pi-l-network.png? | + | The corresponding impedance and admittance matrix equals: |
- | {{ : | + | $$Z=\begin{bmatrix} |
+ | 0 & \frac{j}{\omega C} \\ \frac{j}{\omega C} & 0 | ||
+ | \end{bmatrix}$$ | ||
- | {{ : | + | $$Y=\begin{bmatrix} |
+ | 0 & -j\omega C\\-j \omega C & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | ====Another example==== | ||
+ | Many admittance inverters exist. Another example is the following circuit: | ||
+ | |||
+ | {{ immittance_inverter_pi-l-network.png? | ||
+ | |||
+ | Here, | ||
+ | |||
+ | $$J=-\frac{1}{\omega L}$$ | ||
+ | |||
+ | The ABCD matrix of the corresponding two-port network equals: | ||
+ | |||
+ | $$ABCD=\begin{bmatrix} | ||
+ | 0 & j \omega L \\ \frac{j}{\omega L} & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | The corresponding impedance and admittance matrix equals: | ||
+ | |||
+ | |||
+ | $$Z=\begin{bmatrix} | ||
+ | 0 & -j \omega L \\ -j \omega L & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | $$Y=\begin{bmatrix} | ||
+ | 0 & \frac{j}{\omega L} \\ \frac{j}{\omega L} & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | ---- | ||
+ | <color # | ||
+ | * <color # | ||
+ | * <color # | ||
- | Reference: Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23. | + | ---- |
+ | Looking for impedance inverter? | ||
+ | * [[Impedance inverter]] |
admittance_inverter.1744801717.txt.gz · Last modified: by kl