User Tools

Site Tools


admittance_inverter

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
admittance_inverter [2025/04/21 18:37] adminadmittance_inverter [2025/05/04 08:27] (current) kl
Line 1: Line 1:
 =====Admittance inverter===== =====Admittance inverter=====
  
-An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value B²: 
  
-$$Y_{in}=\frac{B^2}{Y_{out}}$$ 
  
-B is a susceptance, and is called the characteristic admittance of the inverter.+====Definition====
  
-Different options exist to realize an admittance inverter, for example:+An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$multiplied by a value J²:
  
-{{ :admittance_inverter_general_example.png?400 |}}+$$Y_{in}=\frac{J^2}{Y_{out}}$$
  
-The susceptance B can be an inductance or a capacitance. For examplewhen we choose an inductor, B equals $\omega L$ and we get the following circuit. (Note: a negative inductance corresponds to a capacitance, i.e., a capacitor instead of a coil).+J is a susceptance (in siemens), and is called the characteristic admittance of the inverter.
  
-For example, when we choose a capacitor, B equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductancei.e.a coil instead of a capacitor).+For the ABCD matrix of an admittance inverterit holds that A=0 and D=0with the ABCD matrix of a two-port network defined as: 
 +$$\begin{bmatrix} 
 +V_1 \\ I_1 
 +\end{bmatrix} 
 +=\begin{bmatrix} 
 +A & B\\ C & D 
 +\end{bmatrix} 
 +\begin{bmatrix} 
 +V_2 \\ -I_2 
 +\end{bmatrix}$$
  
 +Since the admittance inverter is a reciprocal network, it follows that AD-BC=1, and since A=D=0, we get: B.C=1.
  
 +The general ABCD matrix of an admittance inverter is given by:
 +$$ABCD=\begin{bmatrix}
 +0 & -\frac{j}{J}\\-jJ & 0
 +\end{bmatrix}$$
  
  
-{{ :admittance_inverter_T-l-network.png?300 |}}+====Examplecapacitive wireless power transfer coupling====
  
-Note that this is exactly the magnetic coupling for inductive wireless power transferwhere L is the mutual inductance! +Different options exist to realize an admittance inverterfor example:
  
-The impedance matrix of the corresponding two-port network equals:+{{ admittance_inverter_general_example.png?400 |}}
  
-$$\begin{bmatrix} +For example, when we choose a capacitor, J equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). 
-0 & j\omega L\\j \omega & 0+ 
 +$$J=\omega C$$ 
 + 
 +{{ immittance_inverter_pi-c-network.png?300 |}} 
 + 
 +Note that this is exactly the electric coupling for capacitive wireless power transfer, where C is the mutual capacitance!  
 + 
 +The ABCD matrix of this admittance inverter is given by: 
 +$$ABCD=\begin{bmatrix} 
 +0 & \frac{-j}{\omega C}\\-j \omega & 0
 \end{bmatrix}$$ \end{bmatrix}$$
  
-When considering relay resonators, the ABCD matrix of the admittance inverter is relevant, given by+The corresponding impedance and admittance matrix equals: 
-$$\begin{bmatrix} + 
-0 & j\omega L\\j \omega & 0+$$Z=\begin{bmatrix} 
 +0 & \frac{j}{\omega C} \\ \frac{j}{\omega C} & 0
 \end{bmatrix}$$ \end{bmatrix}$$
  
 +$$Y=\begin{bmatrix}
 +0 & -j\omega C\\-j \omega C & 0
 +\end{bmatrix}$$
  
-For example, when we choose a capacitor, B equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor).+====Another example====
  
 +Many admittance inverters exist. Another example is the following circuit:
  
-{{ :admittance_inverter_pi-c-network.png?300 |}}+{{ immittance_inverter_pi-l-network.png?300 |}}
  
-Note that this is identical to the electric coupling for capacitive wireless power transfer.+Here, 
  
-$$\begin{bmatrix} +$$J=-\frac{1}{\omega L}$$
-0 & \frac{-j}{\omega C}\\-j \omega C & 0 +
-\end{bmatrix}$$+
  
-{{ :admittance_inverter_pi-l-network.png?300 |}}+The ABCD matrix of the corresponding two-port network equals:
  
 +$$ABCD=\begin{bmatrix}
 +0 & j \omega L \\ \frac{j}{\omega L} & 0
 +\end{bmatrix}$$
  
 +The corresponding impedance and admittance matrix equals:
  
-{{ :admittance_inverter_T-c-network.png?300 |}} 
  
 +$$Z=\begin{bmatrix}
 +0 & -j \omega L \\ -j \omega L & 0
 +\end{bmatrix}$$
  
 +$$Y=\begin{bmatrix}
 +0 & \frac{j}{\omega L} \\ \frac{j}{\omega L} & 0
 +\end{bmatrix}$$
  
  
 +----
 +<color #808080>**References**</color>
 +  * <color #808080>Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23.</color>
 +  * <color #808080>J.S.G. Hong and  M.J. Lancaster, ``M.J. Microstrip filters for RF/microwave applications,'' John Wiley and Sons.: Hoboken, NJ, USA, 2004.</color>
  
-Reference: Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23.+---- 
 +Looking for impedance inverter? 
 +  * [[Impedance inverter]]
admittance_inverter.1745260663.txt.gz · Last modified: by admin