admittance_inverter
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| admittance_inverter [2025/04/21 18:37] – admin | admittance_inverter [2025/12/27 16:05] (current) – [Definition] admin | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| =====Admittance inverter===== | =====Admittance inverter===== | ||
| - | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value B²: | ||
| - | $$Y_{in}=\frac{B^2}{Y_{out}}$$ | ||
| - | B is a susceptance, | + | ====Definition==== |
| - | Different options exist to realize an admittance inverter, | + | An admittance inverter |
| - | {{ : | + | $$Y_{in}=\frac{J^2}{Y_{out}}$$ |
| - | The susceptance | + | J is a susceptance |
| - | For example, when we choose a capacitor, B equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead | + | For the ABCD matrix of an admittance inverter, it holds that A=0 and D=0, with the ABCD matrix |
| + | $$\begin{bmatrix} | ||
| + | V_1 \\ I_1 | ||
| + | \end{bmatrix} | ||
| + | =\begin{bmatrix} | ||
| + | A & B\\ C & D | ||
| + | \end{bmatrix} | ||
| + | \begin{bmatrix} | ||
| + | V_2 \\ -I_2 | ||
| + | \end{bmatrix}$$ | ||
| + | Since the admittance inverter is a reciprocal network, it follows that AD-BC=1, and since A=D=0, we get: B.C=-1. | ||
| + | The general ABCD matrix of an admittance inverter is given by: | ||
| + | $$ABCD=\begin{bmatrix} | ||
| + | 0 & -\frac{j}{J}\\-jJ & 0 | ||
| + | \end{bmatrix}$$ | ||
| - | {{ :admittance_inverter_T-l-network.png? | + | ====Example: capacitive wireless power transfer coupling==== |
| - | Note that this is exactly the magnetic coupling for inductive wireless power transfer, where L is the mutual inductance! | + | Different options exist to realize an admittance inverter, for example: |
| - | The impedance matrix of the corresponding two-port network equals: | + | {{ admittance_inverter_general_example.png? |
| - | $$\begin{bmatrix} | + | For example, when we choose a capacitor, J equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). |
| - | 0 & j\omega | + | |
| + | $$J=\omega C$$ | ||
| + | |||
| + | {{ immittance_inverter_pi-c-network.png? | ||
| + | |||
| + | Note that this is exactly the electric coupling for capacitive wireless power transfer, where C is the mutual capacitance! | ||
| + | |||
| + | The ABCD matrix of this admittance inverter is given by: | ||
| + | $$ABCD=\begin{bmatrix} | ||
| + | 0 & \frac{-j}{\omega | ||
| \end{bmatrix}$$ | \end{bmatrix}$$ | ||
| - | When considering relay resonators, the ABCD matrix of the admittance | + | The corresponding impedance and admittance |
| - | $$\begin{bmatrix} | + | |
| - | 0 & j\omega | + | $$Z=\begin{bmatrix} |
| + | 0 & \frac{j}{\omega | ||
| \end{bmatrix}$$ | \end{bmatrix}$$ | ||
| + | $$Y=\begin{bmatrix} | ||
| + | 0 & -j\omega C\\-j \omega C & 0 | ||
| + | \end{bmatrix}$$ | ||
| - | For example, when we choose a capacitor, B equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). | + | ====Another |
| + | Many admittance inverters exist. Another example is the following circuit: | ||
| - | {{ : | + | {{ immittance_inverter_pi-l-network.png? |
| - | Note that this is identical to the electric coupling for capacitive wireless power transfer. | + | Here, |
| - | $$\begin{bmatrix} | + | $$J=-\frac{1}{\omega |
| - | 0 & \frac{-j}{\omega | + | |
| - | \end{bmatrix}$$ | + | |
| - | {{ : | + | The ABCD matrix of the corresponding two-port network |
| + | $$ABCD=\begin{bmatrix} | ||
| + | 0 & j \omega L \\ \frac{j}{\omega L} & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | The corresponding impedance and admittance matrix equals: | ||
| - | {{ : | ||
| + | $$Z=\begin{bmatrix} | ||
| + | 0 & -j \omega L \\ -j \omega L & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | $$Y=\begin{bmatrix} | ||
| + | 0 & \frac{j}{\omega L} \\ \frac{j}{\omega L} & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | ---- | ||
| + | <color # | ||
| + | * <color # | ||
| + | * <color # | ||
| - | Reference: Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23. | + | ---- |
| + | Looking for impedance inverter? | ||
| + | * [[Impedance inverter]] | ||
admittance_inverter.1745260663.txt.gz · Last modified: by admin
