admittance_inverter
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
admittance_inverter [2025/04/21 18:39] – ↷ Links adapted because of a move operation admin | admittance_inverter [2025/05/04 08:27] (current) – kl | ||
---|---|---|---|
Line 1: | Line 1: | ||
=====Admittance inverter===== | =====Admittance inverter===== | ||
- | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value B²: | ||
- | $$Y_{in}=\frac{B^2}{Y_{out}}$$ | ||
- | B is a susceptance, | + | ====Definition==== |
- | Different options exist to realize an admittance inverter, | + | An admittance inverter |
- | {{ immittance_inverter_general_example.png? | + | $$Y_{in}=\frac{J^2}{Y_{out}}$$ |
- | The susceptance | + | J is a susceptance |
- | For example, when we choose a capacitor, B equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead | + | For the ABCD matrix of an admittance inverter, it holds that A=0 and D=0, with the ABCD matrix |
+ | $$\begin{bmatrix} | ||
+ | V_1 \\ I_1 | ||
+ | \end{bmatrix} | ||
+ | =\begin{bmatrix} | ||
+ | A & B\\ C & D | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | V_2 \\ -I_2 | ||
+ | \end{bmatrix}$$ | ||
+ | Since the admittance inverter is a reciprocal network, it follows that AD-BC=1, and since A=D=0, we get: B.C=1. | ||
+ | The general ABCD matrix of an admittance inverter is given by: | ||
+ | $$ABCD=\begin{bmatrix} | ||
+ | 0 & -\frac{j}{J}\\-jJ & 0 | ||
+ | \end{bmatrix}$$ | ||
- | {{ immittance_inverter_t-l-network.png? | + | ====Example: |
- | Note that this is exactly the magnetic coupling for inductive wireless power transfer, where L is the mutual inductance! | + | Different options exist to realize an admittance inverter, for example: |
- | The impedance matrix of the corresponding two-port network equals: | + | {{ admittance_inverter_general_example.png? |
- | $$\begin{bmatrix} | + | For example, when we choose a capacitor, J equals |
- | 0 & j\omega | + | |
- | \end{bmatrix}$$ | + | |
- | When considering relay resonators, the ABCD matrix of the admittance inverter is relevant, given by: | + | $$J=\omega |
- | $$\begin{bmatrix} | + | |
- | 0 & j\omega | + | |
- | \end{bmatrix}$$ | + | |
+ | {{ immittance_inverter_pi-c-network.png? | ||
- | For example, when we choose a capacitor, B equals $\omega | + | Note that this is exactly the electric coupling for capacitive wireless power transfer, where C is the mutual |
+ | The ABCD matrix of this admittance inverter is given by: | ||
+ | $$ABCD=\begin{bmatrix} | ||
+ | 0 & \frac{-j}{\omega C}\\-j \omega C & 0 | ||
+ | \end{bmatrix}$$ | ||
- | {{ immittance_inverter_pi-c-network.png? | + | The corresponding impedance and admittance matrix equals: |
- | Note that this is identical to the electric coupling for capacitive wireless power transfer. | + | $$Z=\begin{bmatrix} |
+ | 0 & \frac{j}{\omega C} \\ \frac{j}{\omega C} & 0 | ||
+ | \end{bmatrix}$$ | ||
- | $$\begin{bmatrix} | + | $$Y=\begin{bmatrix} |
- | 0 & \frac{-j}{\omega C}\\-j \omega C & 0 | + | 0 & -j\omega C\\-j \omega C & 0 |
\end{bmatrix}$$ | \end{bmatrix}$$ | ||
+ | |||
+ | ====Another example==== | ||
+ | |||
+ | Many admittance inverters exist. Another example is the following circuit: | ||
{{ immittance_inverter_pi-l-network.png? | {{ immittance_inverter_pi-l-network.png? | ||
+ | Here, | ||
+ | $$J=-\frac{1}{\omega L}$$ | ||
- | {{ immittance_inverter_t-c-network.png?300 |}} | + | The ABCD matrix of the corresponding two-port network |
+ | $$ABCD=\begin{bmatrix} | ||
+ | 0 & j \omega L \\ \frac{j}{\omega L} & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | The corresponding impedance and admittance matrix equals: | ||
+ | |||
+ | |||
+ | $$Z=\begin{bmatrix} | ||
+ | 0 & -j \omega L \\ -j \omega L & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | $$Y=\begin{bmatrix} | ||
+ | 0 & \frac{j}{\omega L} \\ \frac{j}{\omega L} & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | ---- | ||
+ | <color # | ||
+ | * <color # | ||
+ | * <color # | ||
- | Reference: Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23. | + | ---- |
+ | Looking for impedance inverter? | ||
+ | * [[Impedance inverter]] |
admittance_inverter.1745260795.txt.gz · Last modified: by admin