admittance_inverter
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
admittance_inverter [2025/04/21 18:52] – admin | admittance_inverter [2025/05/04 08:27] (current) – kl | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | =====Immittance | + | =====Admittance |
- | An immittance inverter is the collective name for impedance and admittance inverters. | ||
- | ====Impedance inverter==== | ||
- | ====Admittance inverter==== | + | ====Definition==== |
- | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value B²: | + | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value J²: |
- | $$Y_{in}=\frac{B^2}{Y_{out}}$$ | + | $$Y_{in}=\frac{J^2}{Y_{out}}$$ |
- | B is a susceptance, | + | J is a susceptance |
+ | |||
+ | For the ABCD matrix of an admittance inverter, it holds that A=0 and D=0, with the ABCD matrix of a two-port network defined as: | ||
+ | $$\begin{bmatrix} | ||
+ | V_1 \\ I_1 | ||
+ | \end{bmatrix} | ||
+ | =\begin{bmatrix} | ||
+ | A & B\\ C & D | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | V_2 \\ -I_2 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | Since the admittance inverter is a reciprocal network, it follows that AD-BC=1, and since A=D=0, we get: B.C=1. | ||
+ | |||
+ | The general ABCD matrix of an admittance inverter is given by: | ||
+ | $$ABCD=\begin{bmatrix} | ||
+ | 0 & -\frac{j}{J}\\-jJ & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | |||
+ | ====Example: | ||
Different options exist to realize an admittance inverter, for example: | Different options exist to realize an admittance inverter, for example: | ||
- | {{ immittance_inverter_general_example.png?400 |}} | + | {{ admittance_inverter_general_example.png?400 |}} |
+ | |||
+ | For example, when we choose a capacitor, J equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). | ||
- | For example, when we choose a capacitor, B equals | + | $$J=\omega C$$ |
{{ immittance_inverter_pi-c-network.png? | {{ immittance_inverter_pi-c-network.png? | ||
Line 23: | Line 44: | ||
Note that this is exactly the electric coupling for capacitive wireless power transfer, where C is the mutual capacitance! | Note that this is exactly the electric coupling for capacitive wireless power transfer, where C is the mutual capacitance! | ||
- | The admittance matrix of the corresponding two-port network equals: | + | The ABCD matrix of this admittance inverter is given by: |
- | + | ||
- | $$Y=\begin{bmatrix} | + | |
- | 0 & -j\omega C\\-j \omega C & 0 | + | |
- | \end{bmatrix}$$ | + | |
- | + | ||
- | When considering repeater resonators, the ABCD matrix of the admittance inverter is relevant, | + | |
$$ABCD=\begin{bmatrix} | $$ABCD=\begin{bmatrix} | ||
0 & \frac{-j}{\omega C}\\-j \omega C & 0 | 0 & \frac{-j}{\omega C}\\-j \omega C & 0 | ||
\end{bmatrix}$$ | \end{bmatrix}$$ | ||
+ | The corresponding impedance and admittance matrix equals: | ||
- | For example, when we choose a capacitor, B equals | + | $$Z=\begin{bmatrix} |
- | + | 0 & \frac{j}{\omega C} \\ \frac{j}{\omega C} & 0 | |
- | {{ immittance_inverter_t-l-network.png? | + | \end{bmatrix}$$ |
+ | $$Y=\begin{bmatrix} | ||
+ | 0 & -j\omega C\\-j \omega C & 0 | ||
+ | \end{bmatrix}$$ | ||
- | Note that this is identical to the electric coupling for capacitive wireless power transfer. | + | ====Another example==== |
+ | Many admittance inverters exist. Another example is the following circuit: | ||
{{ immittance_inverter_pi-l-network.png? | {{ immittance_inverter_pi-l-network.png? | ||
+ | Here, | ||
- | The susceptance B can be an inductance or a capacitance. For example, when we choose an inductor, B equals | + | $$J=-\frac{1}{\omega L}$$ |
- | {{ immittance_inverter_t-c-network.png?300 |}} | + | The ABCD matrix of the corresponding two-port network |
+ | $$ABCD=\begin{bmatrix} | ||
+ | 0 & j \omega L \\ \frac{j}{\omega L} & 0 | ||
+ | \end{bmatrix}$$ | ||
- | The impedance matrix | + | The corresponding |
- | $$\begin{bmatrix} | + | |
- | 0 & j\omega L\\j \omega L & 0 | + | $$Z=\begin{bmatrix} |
+ | 0 & -j \omega L \\ -j \omega L & 0 | ||
\end{bmatrix}$$ | \end{bmatrix}$$ | ||
- | $$\begin{bmatrix} | + | $$Y=\begin{bmatrix} |
- | 0 & j\omega L\\j \omega L & 0 | + | 0 & \frac{j}{\omega L} \\ \frac{j}{\omega L} & 0 |
\end{bmatrix}$$ | \end{bmatrix}$$ | ||
- | Reference: | + | |
+ | ---- | ||
+ | <color # | ||
+ | * <color #808080>Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23.</ | ||
+ | * <color # | ||
+ | |||
+ | ---- | ||
+ | Looking for impedance inverter? | ||
+ | * [[Impedance inverter]] |
admittance_inverter.1745261542.txt.gz · Last modified: by admin