admittance_inverter
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| admittance_inverter [2025/04/21 18:52] – admin | admittance_inverter [2025/12/27 16:05] (current) – [Definition] admin | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | =====Immittance | + | =====Admittance |
| - | An immittance inverter is the collective name for impedance and admittance inverters. | ||
| - | ====Impedance inverter==== | ||
| - | ====Admittance inverter==== | + | ====Definition==== |
| - | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value B²: | + | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value J²: |
| - | $$Y_{in}=\frac{B^2}{Y_{out}}$$ | + | $$Y_{in}=\frac{J^2}{Y_{out}}$$ |
| - | B is a susceptance, | + | J is a susceptance |
| + | |||
| + | For the ABCD matrix of an admittance inverter, it holds that A=0 and D=0, with the ABCD matrix of a two-port network defined as: | ||
| + | $$\begin{bmatrix} | ||
| + | V_1 \\ I_1 | ||
| + | \end{bmatrix} | ||
| + | =\begin{bmatrix} | ||
| + | A & B\\ C & D | ||
| + | \end{bmatrix} | ||
| + | \begin{bmatrix} | ||
| + | V_2 \\ -I_2 | ||
| + | \end{bmatrix}$$ | ||
| + | |||
| + | Since the admittance inverter is a reciprocal network, it follows that AD-BC=1, and since A=D=0, we get: B.C=-1. | ||
| + | |||
| + | The general ABCD matrix of an admittance inverter is given by: | ||
| + | $$ABCD=\begin{bmatrix} | ||
| + | 0 & -\frac{j}{J}\\-jJ & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | |||
| + | |||
| + | ====Example: | ||
| Different options exist to realize an admittance inverter, for example: | Different options exist to realize an admittance inverter, for example: | ||
| - | {{ immittance_inverter_general_example.png?400 |}} | + | {{ admittance_inverter_general_example.png?400 |}} |
| + | |||
| + | For example, when we choose a capacitor, J equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). | ||
| - | For example, when we choose a capacitor, B equals | + | $$J=\omega C$$ |
| {{ immittance_inverter_pi-c-network.png? | {{ immittance_inverter_pi-c-network.png? | ||
| Line 23: | Line 44: | ||
| Note that this is exactly the electric coupling for capacitive wireless power transfer, where C is the mutual capacitance! | Note that this is exactly the electric coupling for capacitive wireless power transfer, where C is the mutual capacitance! | ||
| - | The admittance matrix of the corresponding two-port network equals: | + | The ABCD matrix of this admittance inverter is given by: |
| - | + | ||
| - | $$Y=\begin{bmatrix} | + | |
| - | 0 & -j\omega C\\-j \omega C & 0 | + | |
| - | \end{bmatrix}$$ | + | |
| - | + | ||
| - | When considering repeater resonators, the ABCD matrix of the admittance inverter is relevant, | + | |
| $$ABCD=\begin{bmatrix} | $$ABCD=\begin{bmatrix} | ||
| 0 & \frac{-j}{\omega C}\\-j \omega C & 0 | 0 & \frac{-j}{\omega C}\\-j \omega C & 0 | ||
| \end{bmatrix}$$ | \end{bmatrix}$$ | ||
| + | The corresponding impedance and admittance matrix equals: | ||
| - | For example, when we choose a capacitor, B equals | + | $$Z=\begin{bmatrix} |
| - | + | 0 & \frac{j}{\omega C} \\ \frac{j}{\omega C} & 0 | |
| - | {{ immittance_inverter_t-l-network.png? | + | \end{bmatrix}$$ |
| + | $$Y=\begin{bmatrix} | ||
| + | 0 & -j\omega C\\-j \omega C & 0 | ||
| + | \end{bmatrix}$$ | ||
| - | Note that this is identical to the electric coupling for capacitive wireless power transfer. | + | ====Another example==== |
| + | Many admittance inverters exist. Another example is the following circuit: | ||
| {{ immittance_inverter_pi-l-network.png? | {{ immittance_inverter_pi-l-network.png? | ||
| + | Here, | ||
| - | The susceptance B can be an inductance or a capacitance. For example, when we choose an inductor, B equals | + | $$J=-\frac{1}{\omega L}$$ |
| - | {{ immittance_inverter_t-c-network.png?300 |}} | + | The ABCD matrix of the corresponding two-port network |
| + | $$ABCD=\begin{bmatrix} | ||
| + | 0 & j \omega L \\ \frac{j}{\omega L} & 0 | ||
| + | \end{bmatrix}$$ | ||
| - | The impedance matrix | + | The corresponding |
| - | $$\begin{bmatrix} | + | |
| - | 0 & j\omega L\\j \omega L & 0 | + | $$Z=\begin{bmatrix} |
| + | 0 & -j \omega L \\ -j \omega L & 0 | ||
| \end{bmatrix}$$ | \end{bmatrix}$$ | ||
| - | $$\begin{bmatrix} | + | $$Y=\begin{bmatrix} |
| - | 0 & j\omega L\\j \omega L & 0 | + | 0 & \frac{j}{\omega L} \\ \frac{j}{\omega L} & 0 |
| \end{bmatrix}$$ | \end{bmatrix}$$ | ||
| - | Reference: | + | |
| + | ---- | ||
| + | <color # | ||
| + | * <color #808080>Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23.</ | ||
| + | * <color # | ||
| + | |||
| + | ---- | ||
| + | Looking for impedance inverter? | ||
| + | * [[Impedance inverter]] | ||
admittance_inverter.1745261542.txt.gz · Last modified: by admin
