admittance_inverter
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
admittance_inverter [2025/05/04 08:12] – kl | admittance_inverter [2025/05/04 08:27] (current) – kl | ||
---|---|---|---|
Line 37: | Line 37: | ||
For example, when we choose a capacitor, J equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). | For example, when we choose a capacitor, J equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). | ||
+ | |||
+ | $$J=\omega C$$ | ||
{{ immittance_inverter_pi-c-network.png? | {{ immittance_inverter_pi-c-network.png? | ||
Line 61: | Line 63: | ||
Many admittance inverters exist. Another example is the following circuit: | Many admittance inverters exist. Another example is the following circuit: | ||
- | {{ immittance_inverter_t-c-network.png? | + | {{ immittance_inverter_pi-l-network.png? |
+ | Here, | ||
+ | |||
+ | $$J=-\frac{1}{\omega L}$$ | ||
The ABCD matrix of the corresponding two-port network equals: | The ABCD matrix of the corresponding two-port network equals: | ||
- | $$\begin{bmatrix} | + | $$ABCD=\begin{bmatrix} |
- | 0 & \frac{j}{\omega | + | 0 & j \omega L \\ \frac{j}{\omega |
\end{bmatrix}$$ | \end{bmatrix}$$ | ||
The corresponding impedance and admittance matrix equals: | The corresponding impedance and admittance matrix equals: | ||
+ | |||
$$Z=\begin{bmatrix} | $$Z=\begin{bmatrix} | ||
- | 0 & -\frac{j}{\omega | + | 0 & -j \omega |
\end{bmatrix}$$ | \end{bmatrix}$$ | ||
$$Y=\begin{bmatrix} | $$Y=\begin{bmatrix} | ||
- | 0 & j\omega | + | 0 & \frac{j}{\omega |
\end{bmatrix}$$ | \end{bmatrix}$$ | ||
admittance_inverter.1746346337.txt.gz · Last modified: by kl