User Tools

Site Tools


admittance_inverter

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
admittance_inverter [2025/05/04 08:12] kladmittance_inverter [2025/05/04 08:27] (current) kl
Line 37: Line 37:
  
 For example, when we choose a capacitor, J equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). For example, when we choose a capacitor, J equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor).
 +
 +$$J=\omega C$$
  
 {{ immittance_inverter_pi-c-network.png?300 |}} {{ immittance_inverter_pi-c-network.png?300 |}}
Line 61: Line 63:
 Many admittance inverters exist. Another example is the following circuit: Many admittance inverters exist. Another example is the following circuit:
  
-{{ immittance_inverter_t-c-network.png?300 |}}+{{ immittance_inverter_pi-l-network.png?300 |}}
  
 +Here, 
 +
 +$$J=-\frac{1}{\omega L}$$
  
 The ABCD matrix of the corresponding two-port network equals: The ABCD matrix of the corresponding two-port network equals:
  
-$$\begin{bmatrix} +$$ABCD=\begin{bmatrix} 
-0 &  \frac{j}{\omega C\\ j \omega C & 0+0 & j \omega L \\ \frac{j}{\omega L} & 0
 \end{bmatrix}$$ \end{bmatrix}$$
  
 The corresponding impedance and admittance matrix equals: The corresponding impedance and admittance matrix equals:
 +
  
 $$Z=\begin{bmatrix} $$Z=\begin{bmatrix}
-0 & -\frac{j}{\omega C} \\ -\frac{j}{\omega C} & 0+0 & -j \omega \\ -j \omega & 0
 \end{bmatrix}$$ \end{bmatrix}$$
  
 $$Y=\begin{bmatrix} $$Y=\begin{bmatrix}
-0 & j\omega C\\ j \omega & 0+0 & \frac{j}{\omega L} \\ \frac{j}{\omega L} & 0
 \end{bmatrix}$$ \end{bmatrix}$$
  
admittance_inverter.1746346337.txt.gz · Last modified: by kl