admittance_matrix
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revision | |||
admittance_matrix [2025/04/16 11:05] – kl | admittance_matrix [2025/04/16 11:07] (current) – removed kl | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | =====Admittance inverter===== | ||
- | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value B²: | ||
- | |||
- | $$Y_{in}=\frac{B^2}{Y_{out}}$$ | ||
- | |||
- | B is a susceptance, | ||
- | |||
- | Different options exist to realize an admittance inverter, of example: | ||
- | |||
- | {{ : | ||
- | |||
- | The susceptance B can be an inductance or a capacitance. For example, when we choose a capacitor, B equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). | ||
- | |||
- | {{ : | ||
- | |||
- | $$\begin{bmatrix} | ||
- | 0 & \frac{-j}{\omega C}\\-j \omega C & 0 | ||
- | \end{bmatrix}$$ | ||
- | |||
- | {{ : | ||
- | |||
- | {{ : | ||
- | |||
- | {{ : | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | Reference: Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23. |
admittance_matrix.1744801543.txt.gz · Last modified: 2025/04/16 11:05 by kl