admittance_matrix
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revision | |||
| admittance_matrix [2025/04/16 11:05] – kl | admittance_matrix [2025/04/16 11:07] (current) – removed kl | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | =====Admittance inverter===== | ||
| - | An admittance inverter changes an output admittance $Y_{out}$ to its inversely proportional value $Y_{in}$, multiplied by a value B²: | ||
| - | |||
| - | $$Y_{in}=\frac{B^2}{Y_{out}}$$ | ||
| - | |||
| - | B is a susceptance, | ||
| - | |||
| - | Different options exist to realize an admittance inverter, of example: | ||
| - | |||
| - | {{ : | ||
| - | |||
| - | The susceptance B can be an inductance or a capacitance. For example, when we choose a capacitor, B equals $\omega C$ and we get the following circuit. (Note: a negative capacitance corresponds to an inductance, i.e., a coil instead of a capacitor). | ||
| - | |||
| - | {{ : | ||
| - | |||
| - | $$\begin{bmatrix} | ||
| - | 0 & \frac{-j}{\omega C}\\-j \omega C & 0 | ||
| - | \end{bmatrix}$$ | ||
| - | |||
| - | {{ : | ||
| - | |||
| - | {{ : | ||
| - | |||
| - | {{ : | ||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | Reference: Tosic, D. V., & Potrebic, M. (2006). Symbolic analysis of immittance inverters, 14th Telecommunication Forum. Belgrade (Serbia), 21-23. | ||
admittance_matrix.1744801543.txt.gz · Last modified: by kl
