impedance_inverter
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| impedance_inverter [2025/05/04 07:58] – kl | impedance_inverter [2025/12/27 16:06] (current) – [Definition] admin | ||
|---|---|---|---|
| Line 22: | Line 22: | ||
| \end{bmatrix}$$ | \end{bmatrix}$$ | ||
| - | Since the impedance inverter is a reciprocal network, it follows that AD-BC=1, and since A=D=0, we get: B.C=1. | + | Since the impedance inverter is a reciprocal network, it follows that AD-BC=1, and since A=D=0, we get: B.C=-1. |
| Line 30: | Line 30: | ||
| \end{bmatrix}$$ | \end{bmatrix}$$ | ||
| - | ====Examples==== | + | ====Example: inductive wireless power transfer coupling==== |
| - | Different options exist to realize an admittance | + | Different options exist to realize an impedance |
| {{ impedance_inverter_general_example.png? | {{ impedance_inverter_general_example.png? | ||
| Line 38: | Line 38: | ||
| For example, when we choose an inductor, K equals $\omega L$ and we get the following circuit. (Note: a negative inductor corresponds to an capacitance, | For example, when we choose an inductor, K equals $\omega L$ and we get the following circuit. (Note: a negative inductor corresponds to an capacitance, | ||
| + | $$K=\omega L$$ | ||
| {{ immittance_inverter_t-l-network.png? | {{ immittance_inverter_t-l-network.png? | ||
| Line 43: | Line 44: | ||
| Note that this is exactly the magnetic coupling for inductive wireless power transfer, where L is the mutual inductance! | Note that this is exactly the magnetic coupling for inductive wireless power transfer, where L is the mutual inductance! | ||
| + | The ABCD matrix of this impedance inverter is given by: | ||
| + | $$ABCD=\begin{bmatrix} | ||
| + | 0 & -j \omega L \\ -\frac{j}{\omega L} & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | |||
| + | The corresponding impedance and admittance matrix equals: | ||
| + | |||
| + | $$Z=\begin{bmatrix} | ||
| + | 0 & j \omega L \\ j \omega L & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | |||
| + | $$Y=\begin{bmatrix} | ||
| + | 0 & -\frac{j}{\omega L} \\ -\frac{j}{\omega L} & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | |||
| + | |||
| + | |||
| + | ====Another example==== | ||
| + | |||
| + | Many impedance inverters exist. Another example is the following circuit: | ||
| + | |||
| + | {{ immittance_inverter_t-c-network.png? | ||
| + | |||
| + | Here, | ||
| + | |||
| + | $$K=-\frac{1}{\omega C}$$ | ||
| + | |||
| + | The ABCD matrix of the corresponding two-port network equals: | ||
| + | |||
| + | $$\begin{bmatrix} | ||
| + | 0 & \frac{j}{\omega C} \\ j \omega C & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | |||
| + | The corresponding impedance and admittance matrix equals: | ||
| + | |||
| + | $$Z=\begin{bmatrix} | ||
| + | 0 & -\frac{j}{\omega C} \\ -\frac{j}{\omega C} & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | |||
| + | $$Y=\begin{bmatrix} | ||
| + | 0 & j\omega C\\ j \omega C & 0 | ||
| + | \end{bmatrix}$$ | ||
| + | ---- | ||
| + | <color # | ||
| + | * <color # | ||
| + | * <color # | ||
| + | ---- | ||
| Looking for admittance inverter? | Looking for admittance inverter? | ||
| * [[admittance inverter]] | * [[admittance inverter]] | ||
impedance_inverter.1746345525.txt.gz · Last modified: by kl · Currently locked by: 216.73.216.38
