impedance_inverter
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
impedance_inverter [2025/05/04 07:58] – kl | impedance_inverter [2025/05/04 08:27] (current) – kl | ||
---|---|---|---|
Line 30: | Line 30: | ||
\end{bmatrix}$$ | \end{bmatrix}$$ | ||
- | ====Examples==== | + | ====Example: inductive wireless power transfer coupling==== |
- | Different options exist to realize an admittance | + | Different options exist to realize an impedance |
{{ impedance_inverter_general_example.png? | {{ impedance_inverter_general_example.png? | ||
Line 38: | Line 38: | ||
For example, when we choose an inductor, K equals $\omega L$ and we get the following circuit. (Note: a negative inductor corresponds to an capacitance, | For example, when we choose an inductor, K equals $\omega L$ and we get the following circuit. (Note: a negative inductor corresponds to an capacitance, | ||
+ | $$K=\omega L$$ | ||
{{ immittance_inverter_t-l-network.png? | {{ immittance_inverter_t-l-network.png? | ||
Line 43: | Line 44: | ||
Note that this is exactly the magnetic coupling for inductive wireless power transfer, where L is the mutual inductance! | Note that this is exactly the magnetic coupling for inductive wireless power transfer, where L is the mutual inductance! | ||
+ | The ABCD matrix of this impedance inverter is given by: | ||
+ | $$ABCD=\begin{bmatrix} | ||
+ | 0 & -j \omega L \\ -\frac{j}{\omega L} & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | The corresponding impedance and admittance matrix equals: | ||
+ | $$Z=\begin{bmatrix} | ||
+ | 0 & j \omega L \\ j \omega L & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | $$Y=\begin{bmatrix} | ||
+ | 0 & -\frac{j}{\omega L} \\ -\frac{j}{\omega L} & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | |||
+ | |||
+ | ====Another example==== | ||
+ | |||
+ | Many impedance inverters exist. Another example is the following circuit: | ||
+ | |||
+ | {{ immittance_inverter_t-c-network.png? | ||
+ | |||
+ | Here, | ||
+ | |||
+ | $$K=-\frac{1}{\omega C}$$ | ||
+ | |||
+ | The ABCD matrix of the corresponding two-port network equals: | ||
+ | |||
+ | $$\begin{bmatrix} | ||
+ | 0 & \frac{j}{\omega C} \\ j \omega C & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | The corresponding impedance and admittance matrix equals: | ||
+ | |||
+ | $$Z=\begin{bmatrix} | ||
+ | 0 & -\frac{j}{\omega C} \\ -\frac{j}{\omega C} & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | $$Y=\begin{bmatrix} | ||
+ | 0 & j\omega C\\ j \omega C & 0 | ||
+ | \end{bmatrix}$$ | ||
+ | |||
+ | ---- | ||
+ | <color # | ||
+ | * <color # | ||
+ | * <color # | ||
+ | |||
+ | ---- | ||
Looking for admittance inverter? | Looking for admittance inverter? | ||
* [[admittance inverter]] | * [[admittance inverter]] | ||
impedance_inverter.1746345525.txt.gz · Last modified: by kl