ipt:basics:resonancefrequency
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
ipt:basics:resonancefrequency [2024/04/04 12:03] – admin | ipt:basics:resonancefrequency [2024/04/04 17:07] (current) – [Equivalent circuit] 2a02:1812:40f:9800:b890:7399:f066:e603 | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ====== Coupled coils with series resistance ====== | ||
+ | ===== Circuit ===== | ||
+ | |||
+ | Consider two coils with inductances $L_1$ and $L_2$, coupled by mutual inducance $M$. The inductors have series resistance $R_1$ and $R_2$. | ||
+ | |||
{{: | {{: | ||
- | Imedance | + | ===== Equivalent circuit ===== |
+ | |||
+ | This circuit can be represented by the following equivalent circuit: | ||
+ | |||
+ | INSERT FIGURE HERE | ||
+ | |||
+ | Other equivalent circuit representations can be found here. | ||
+ | |||
+ | ===== Description as a two-port network ===== | ||
+ | |||
+ | ==== Impedance | ||
+ | |||
+ | The impedance matrix of the circuit is given by: | ||
\begin{align} | \begin{align} | ||
+ | Z = | ||
+ | \begin{bmatrix} | ||
+ | z_{11} | ||
+ | z_{21} | ||
+ | \end{bmatrix}= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
- | I_1 \\ | + | R_1+j\omega L_1 & j \omega M \\ |
- | I_2 \\ | + | j \omega M & R_2+j\omega L_2 \\ |
\end{bmatrix} | \end{bmatrix} | ||
- | = | + | \end{align} |
+ | |||
+ | with $\omega$ the angular frequency. | ||
+ | |||
+ | ==== Admittance matrix ==== | ||
+ | |||
+ | \begin{align} | ||
+ | Y = \frac{1}{det(Z)} | ||
\begin{bmatrix} | \begin{bmatrix} | ||
- | y_{11} & y_{12} \\ | + | z_{22} & -z_{12} \\ |
- | y_{21} & y_{22} \\ | + | -z_{21} & z_{11} \\ |
- | \end{bmatrix} | + | \end{bmatrix}= |
- | . | + | |
\begin{bmatrix} | \begin{bmatrix} | ||
- | V_1 \\ | + | R_2+j\omega L_2 & -j \omega M \\ |
- | V_2 \\ | + | -j \omega M & R_1+j\omega L_1 \\ |
- | \end{bmatrix} . | + | \end{bmatrix} |
- | \label{IV-relations} | + | |
\end{align} | \end{align} | ||
+ | |||
+ | with $det(Z)$ the determinant of Z. |
ipt/basics/resonancefrequency.1712232239.txt.gz · Last modified: 2024/04/04 12:03 by admin