User Tools

Site Tools


ipt:basics:resonancefrequency

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ipt:basics:resonancefrequency [2024/04/04 12:26] adminipt:basics:resonancefrequency [2024/04/04 17:07] (current) – [Equivalent circuit] 2a02:1812:40f:9800:b890:7399:f066:e603
Line 1: Line 1:
-====== Headline Level 1 ====== +====== Coupled coils with series resistance ======  
-===== Headline Level 2 ===== +===== Circuit =====
-==== Headline Level 3 ==== +
-=== Headline Level 4 === +
-== Headline Level 5 ==+
  
-Consider two coils with inductances $L_1$ and $L_2$, coupled by mutual inducance $M$. The inductors have series resistance $R_1$ and $R_2$+Consider two coils with inductances $L_1$ and $L_2$, coupled by mutual inducance $M$. The inductors have series resistance $R_1$ and $R_2$.
  
 {{:ipt:basics:coupled_coils_with_series_resistances.png?400|}} {{:ipt:basics:coupled_coils_with_series_resistances.png?400|}}
  
-This circuit can be represented by the following [[equivalent circuit]]:+===== Equivalent circuit ===== 
 + 
 +This circuit can be represented by the following equivalent circuit:
  
 INSERT FIGURE HERE INSERT FIGURE HERE
 +
 +Other equivalent circuit representations can be found here.
 +
 +===== Description as a two-port network =====
 +
 +==== Impedance matrix ====
  
 The impedance matrix of the circuit is given by: The impedance matrix of the circuit is given by:
Line 17: Line 22:
 \begin{align} \begin{align}
  Z =  Z =
 +        \begin{bmatrix}
 + z_{11}  & z_{12} \\
 + z_{21}  & z_{22} \\
 + \end{bmatrix}=
  \begin{bmatrix}  \begin{bmatrix}
  R_1+j\omega L_1 & j \omega M  \\  R_1+j\omega L_1 & j \omega M  \\
- j \omega M  & R_1+j\omega L_ 2 \\+ j \omega M  & R_2+j\omega L_2 \\
  \end{bmatrix}  \end{bmatrix}
 \end{align} \end{align}
  
 with $\omega$ the angular frequency. with $\omega$ the angular frequency.
 +
 +==== Admittance matrix ====
 +
 +\begin{align}
 + Y = \frac{1}{det(Z)}
 + \begin{bmatrix}
 + z_{22}  & -z_{12} \\
 + -z_{21}  & z_{11} \\
 + \end{bmatrix}=
 +        \frac{1}{R_1R_2+\omega^2(M^2-L_1L_2)+j\omega (R_1L_2+R_2L_1)}
 + \begin{bmatrix}
 + R_2+j\omega L_2 & -j \omega M  \\
 + -j \omega M  & R_1+j\omega L_1 \\
 + \end{bmatrix}
 +\end{align}
 +
 +with $det(Z)$ the determinant of Z.
ipt/basics/resonancefrequency.1712233609.txt.gz · Last modified: 2024/04/04 12:26 by admin