User Tools

Site Tools


simulating_a_time-varying_capacitor_in_spice

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
simulating_a_time-varying_capacitor_in_spice [2024/09/10 10:25] bmsimulating_a_time-varying_capacitor_in_spice [2024/09/10 11:51] (current) bm
Line 22: Line 22:
 .subckt capacitor + - params: VC0=0 .subckt capacitor + - params: VC0=0
 .func C(time) {5n+3n*sin(2*pi*100k*time)} .func C(time) {5n+3n*sin(2*pi*100k*time)}
-hvolt + - value={(sdt(I(+,-))+VC0*C(0))/C(time)}+hvolt + - value={(sdt(I(hvolt))+VC0*C(0))/C(time)}
 .ends .ends
 </code> </code>
Line 38: Line 38:
 To use the time-varying capacitor in a circuit, click "component" (F2) and insert the custom capacitor by searching "capacitor" in the window. To use the time-varying capacitor in a circuit, click "component" (F2) and insert the custom capacitor by searching "capacitor" in the window.
  
-Plotting the value of the inductance in SPICE in function of time is not straightforward. Let us just check some individual times: we compare the value of the current through and voltage over the inductor (i) in the case of the time-varying inductor at time $t_i$ (after the transition period), and (ii) in the case of a static inductor with value $L(t_i)$. +Plotting the value of the capacitance in SPICE in function of time is not straightforward. Let us just check some individual times: we compare the value of the current through and voltage over the capacitor (i) in the case of the time-varying capacitor at time $t_i$ (after the transition period), and (ii) in the case of a static capacitor with value $C(t_i)$. 
  
 Case (i): We apply a high frequency source in order to create an envelope facilitating comparison between both cases. Case (i): We apply a high frequency source in order to create an envelope facilitating comparison between both cases.
  
 +{{:simulating_a_time-varying_capacitor_in_spice-1.png|}}
  
-{{:simulating_a_time-varying_inductor_in_spice-1.png|}} +At a certain time, e.g., t=50µs, the value of the capacitor equals $C$(50µs)=  nF + 3 nF.sin(2π.100 kHz.50µs)=5 nF.
- +
-At a certain time, e.g., t=50µs, the value of the inductor equals $L$(50µs)= 5 mH + 3 mH.sin(2π.100 kHz.50 µs)=5 mH.+
 If we then zoom in at the simulation at t=50µs, we find the peak value of voltage over and current through the inductor. If we then zoom in at the simulation at t=50µs, we find the peak value of voltage over and current through the inductor.
  
-Case (ii): We compare this value with a static inductor of 5 mH: +Case (ii): We compare this value with a static inductor of 5 nF
- +{{:simulating_a_time-varying_capacitor_in_spice-2.png|}}
-{{:simulating_a_time-varying_inductor_in_spice-2.png|}}+
  
 We find that both the current and voltage correspond to case (i). We find that both the current and voltage correspond to case (i).
  
-We do the same for a lot of other values of time, and always find a correspondence between both cases. This is not a rigid proof, but it gives us sufficient confidence that the inductor was modeled correctly in SPICE.+We do the same for a lot of other values of time, and always find a correspondence between both cases. This is not a rigid proof, but it gives us sufficient confidence that the capacitor was modeled correctly in SPICE.
  
  
simulating_a_time-varying_capacitor_in_spice.1725963907.txt.gz · Last modified: by bm